by a 3 to 10% perturbation in the local rotation rate in the outer few percent of the Sun (16).

Finally, the Sun’s mean hexadecapole shape amplitude is small (–0.1 ± 0.4 milli–arc sec) but shows a hint of variability (21). This value is marginally correlated with the sunspot cycle with an amplitude of 2.1 ± 2 milli–arc sec. The hexadecapole shape is also sensitive to the internal solar differential rotation, but if due only to rotation, it would require large changes (on the order of 50%) in the outer parts of the Sun (16) that are not consistent with the constant helioseismic rotation (20) and the constant oblateness. In contrast, solar-cycle changes in near-surface flows or magnetic stresses localized near mid-latitudes could affect C₄ and not the oblateness.

References and Notes

11. We let (r,θ) be the observed LDF function from a binned LDF from a binned satellite image. From this, we used the circular average mean LDF represented by Γ(θ) to solve for a brightness function α(r) and the limb shape β(r). The binned LDF function was then expressed as L(r,θ) = |α(r) + 1/2β(θ) – β(0)|, where α and β represent the mean brightness change and position around the limb. We then linearized this equation and solved it as a least-squares problem to find α and β. We obtained the function Γ(θ) from the binned intensity of limb pixels, whereas we iterated the solution for β(θ) so that Γ(θ) was adjusted at each iteration by correcting the limb-pixel binning by shifting pixels by the local β(θ) from the previous iteration. This was done for each of the typically 13,000 images obtained during an SDO spacecraft roll. After two iterations, the solution was stable to better than 5%.
13. Figure S1 shows that the analysis recovers the limb shape, independent of any limb brightness variations. Figure S2 shows that independent simultaneous HMI solar-limb shape and brightness measurements agree on all angular scales and that the limb position and brightness measurements are dominated by solar atmosphere inhomogeneity and its global asphericity.
15. Figure S3 shows how the limb brightness and position are correlated and how the brightness measurements are used to flag localized magnetic limb contamination of the limb shape. The shape analysis is broadly insensitive to the brightness threshold, with no significant change in the derived global oblateness, even with large changes in the assumed brightness threshold.
17. The χ² statistic for these 5 degrees of freedom and a constant to describe the Fig. 4 C₄ data are both equal to 2.8. This indicates no statistical basis for a nonconstant C₄ at better than the 99.9% confidence level.
21. The χ² statistic for describing the hexadecapole amplitude as a constant was 9.4. This was marginally inconsistent (at 95% level) with a constant. Linear regression of the hexadecapole measurements against the sunspot number time series suggested a marginally significant hexadecapole solar-cycle variation with an amplitude of 2.1 ± 2 milli–arc sec.

Acknowledgments: The raw and astrometric data used for this analysis are available via the HMI public archives (http://jsoc.stanford.edu). The development of the HMI astrometry pipeline was supported by NASA and a grant to Stanford University and the Univ. of Hawaii (NNX09AP0G). The HMI experiment aboard the SDO satellite was funded, in part, by a NASA contract to Stanford (NASS-02139). J.R.K. was supported by a senior Humboldt prize while some of this work was done at the Kiepenheuer Institut für Sonnenphysik. M.E. was partially supported by Instituto Nacional de Estudos do Espaço (CNPq), CNPq grant 303673/2010-8, and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior grant 0873/11-0. We thank H. Hudson for comments on this manuscript.

Supplementary Materials

www.sciencemag.org/cgi/content/full/science.1223231/DC1

Supplementary Text

Figs. S1 to S3

Table S1

References

11 April 2012; accepted 7 August 2012

Published online 16 August 2012;
10.1126/science.1223231

A Physically Transient Form of Silicon Electronics

Suk-Won Hwang,1* Hu Tao,2† Dae-Hyeong Kim,3 Huanyu Cheng,4 Jun-Kyu Song,5 Elliott Rill,5 Mark A. Brenchle,6 Bruce Panailitis,6 Sang Min Won,6 Yun-Soung Kim,1 Young Min Song,1 Ki Jun Yu,6 Abid Ameen,5 Rui Li,7 Yewang Su,4 Miaomiao Yang,2 Suk-Won Hwang,1† John A. Rogers1,5,6,†

A remarkable feature of modern silicon electronics is its ability to remain physically invariant, almost indefinitely for practical purposes. Although this characteristic is a hallmark of applications of integrated circuits that exist today, there might be opportunities for systems that offer the opposite behavior, such as implantable devices that function for medically useful time frames but then completely disappear via resorption by the body. We report a set of materials, manufacturing schemes, device components, and theoretical design tools for a silicon-based complementary metal oxide semiconductor (CMOS) technology that has this type of transient behavior, together with integrated sensors, actuators, power supply systems, and wireless control strategies. An implantable transient device that acts as a programmable nonantibiotic bactericide provides a system-level example.

A n overarching goal in the development of nearly any new class of electronics is to achieve high-performance operation in physical forms that undergo negligible change with time. Active and passive devices, circuit and layout strategies, and packaging strategies are each formulated individually and then configured collectively to accomplish this outcome. Here we present concepts and strategies for electronics that involve similar attention to engineering designs, but with the goal of achieving systems that physically disappear at prescribed times and at controlled rates. Applications that could exploit this transient behavior include implantable medical diagnostic and therapeutic devices that resorb in the body to avoid adverse long-term effects, fieldable environmental sensors that dissolve to eliminate the need for their retrieval, and portable consumer devices that decompose to minimize the costs and health risks associated with recycling and the management of hazardous waste streams. For these three examples, the desired time scales for transience range from days or weeks, to months, to years, respectively. The approaches reported here can address these and other application concepts with circuit components whose operational characteristics match those of nontransient counterparts formed in the usual way on silicon wafer substrates. When combined with transient sensors, actuators, power supplies, and wireless control systems, this technology provides levels of function that substantially exceed those available

1Department of Materials Science and Engineering, Beckman Institute for Advanced Science and Technology, and Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana–Champaign, Urbana, IL 61801, USA. 2Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA. 3School of Chemical and Biological Engineering, Center for Nanoparticle Research of Institute for Basic Science, WCU Program of Chemical Convergence for Energy and Environment, Seoul National University, Seoul 151-741, Republic of Korea. 4Department of Mechanical Engineering and Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA. 5Department of Chemistry, University of Illinois at Urbana–Champaign, Urbana, IL 61801, USA. 6Department of Electrical and Computer Engineering, University of Illinois at Urbana–Champaign, Urbana, IL 61801, USA. 7State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, China. 8Nano Terra, Brighton, MA 02135, USA. 9Department of Medicine and Department of BioMedical Engineering, Sarver Heart Center, University of Arizona, Tucson, AZ 85724, USA. 10Department of Physics, Tufts University, Medford, MA 02155, USA.

*These authors contributed equally to this work. To whom correspondence should be addressed. E-mail: jaro@uiuc.edu (J.A.R.); fiorenzo.omenetto@tufts.edu (F.G.O.)
Fig. 1. Demonstration platform for transient electronics, with key materials, device structures, and reaction mechanisms. (A) Image of a device that includes transistors, diodes, inductors, capacitors, and resistors, with interconnects and interlayer dielectrics, all on a thin silk substrate. (B) Exploded-view schematic illustration, with a top view in the lower right inset. (C) Images showing the time sequence of dissolution in DI water. (D) Chemical reactions for each of the constituent materials with water.

Fig. 2. Experimental studies of transient electronic materials and devices and corresponding theoretical analysis. (A) Atomic force microscope topographical images of a Si NM (initial dimensions: 3 μm x 3 μm x 70 nm) at various stages of hydrolysis in PBS at 37°C. (B) Diagram of the processes of reactive diffusion used in models of transience. (C) Experimental (symbols) and theoretical (lines) results for time-dependent dissolution of Si NMs (35 nm, black; 70 nm, blue; 100 nm, red) in PBS at 37°C. (D) Optical microscope images of the dissolution of a serpentine trace of Mg (150 nm thick) on top of a layer of MgO (10 nm thick) in DI water at room temperature. (E) Experimental (symbols) and theoretical (lines) results of dissolution kinetics of similar traces of Mg (300 nm thick) with different encapsulating layers: MgO (400 nm, red; 800 nm, blue) and silk (condition i, cyan; condition ii, purple). (F) Measurements of transience in operational characteristics of n-channel transistors encapsulated by MgO and crystallized silk (picture in the inset on the left) and then immersed in DI water. The results show the drain current (I_d) at V_d = 0.1 V as a function of V_g at various times (left) and at V_g = 5 V as a function of time (right).
with recently reported forms of organic electronics, in which certain constituent materials are water-soluble (1–3), or with simple nontransient transistors formed on biocompatible substrates (4).

Figure 1, A and B, and fig. S1 provide images and schematic diagrams of a demonstration platform. All of the components, ranging from the inductors, capacitors, resistors, diodes, transistors, interconnects, and crossovers, to the substrate and encapsulation, disintegrate and dissolve when immersed in deionized (DI) water (Fig. 1C). This example uses magnesium (Mg) for the conductors, magnesium oxide (MgO) (silicon dioxide, SiO2, is also possible) for the dielectrics, monocrystalline silicon (Si) nanomembranes (NMs) for the semiconductors, and silk (which is water-soluble and enzymatically degradable) (4, 5) for the substrate and packaging material. The fabrication of systems such as this one involves a combination of transfer printing (Si NMs) (6), physical vapor deposition through fine-line stencil masks (Mg, MgO, and SiO2), and solution-casting (silk). More details on sample preparation can be found in (6). As adhesion promoters for Mg, we used MgO in certain cases and ultrasil layers of Ti in others. Device yields without the Ti are 70 to ~80% with evaporated Mg and >90% with sputtered Mg.

The chemical reactions responsible for the dissolution of each material appear in Fig. 1D. The Si NMs and layers of SiO2 are particularly important because of their essential roles in high-performance transistors, diodes, photodetectors, solar cells, temperature sensors, strain gauges, and other semiconductor devices. The NM geometry is critical because it enables high-performance devices and planar architectures, minimizes the amount of material that must be consumed during the transient step, and provides mechanics and processing options that are favorable for heterogeneous integration onto substrates such as silk (4), as well as elastomers that can provide modulus-matched interfaces with the body (7).

A typical transistor described here requires less than ~1 μg of Si, which can be dissolved in as little as 30 μl of biofluid (8).

Figure 2A presents atomic force micrographs of a Si NM (3 × 3 μm) with a thickness of 70 nm, collected at different stages of dissolution in phosphate-buffered saline (PBS; pH of 7.4) at 37°C, to simulate transience by biore sorption (see figs. S2 and S3A for additional data). The dissolution involves hydrolysis to form Si(OH)4 (9), according to Si + 4 H2O → Si(OH)4 + 2 H2, where SiO2 can sometimes be involved as an intermediate (10). The simplest model of the kinetics, which depends strongly on pH, considers a constant reaction rate at the water/Si NM interface (11). The results capture experimental observations at both body temperature (37°C) (Fig. 2C) and room temperature (25°C) (fig. S3A) for a dissolution rate of 4.5 nm/day and 2 nm/day, respectively, consistent with Arrhenius scaling (12).

Mechanisms involving diffusion into the materials can be important for Mg and MgO deposited by electron-beam evaporation and SiO2 formed by chemical vapor deposition, or as an intermediate in the hydrolysis of Si. In such cases, the kinetics can be described analytically using models of reactive diffusion (Fig. 2B) (6).

The results quantitatively account for related behaviors in other materials for transient electronics, including those in Fig. 1 (6). Figure 2D presents a meander trace of Mg (150 nm) on a thin film of MgO (10 nm; adhesion promoter), in which the measured changes in resistance correlate well with those expected based on computed changes in thickness (Fig. 2E and fig. S4, A and B) (6). (Other examples appear in fig. S5.) This result connects a key electrical property to models of reactive diffusion, thereby suggesting the capacity to use such analytics in conjunction with established circuit simulators as a comprehensive design approach.
The transience times for NM-based electronic components can be extended, in controlled amounts, by adding transient encapsulating layers and packaging materials; they can be reduced by decreasing the critical dimensions or by physically structuring the materials in a way that accelerates dissolution by disintegration (fig. S6). Figure 2E and fig. S4 show results of measured transience in a serpentine resistor of Mg, encapsulated with different thicknesses of MgO and with combinations of MgO and overcoats of silk. Corresponding modeling results are also shown in (6). Silk is attractive for this purpose because its solubility in water can be programmed, over several orders of magnitude, through the control of crystallinity (5, 13). Other biodegradable polymers can also be used, as shown in fig. S7.

Studies of transience at the device level are also important. Figure 2F shows examples of metal oxide semiconductor field-effect transistors (MOSFETs) formed using Si NM s, SiO2 gate dielectrics, and Mg electrodes, with encapsulating layers of MgO and crystallized silk. The devices show two-stage kinetics in their functional transience. Immersion in DI water for up to ~90 hours causes negligible change in key device characteristics. Functional degradation then occurs in a relatively narrow time interval after this period of stable operation. The encapsulation defines the first time scale; the Mg electrodes define the second. The results demonstrate that the transience time can be engineered in a way that is decoupled from system- or device-level function.

These materials, fabrication techniques, and modeling tools can yield components for almost any type of transient electronic system, in CMOS designs. Figure 3 presents several examples, including additional details on MOSFETs similar to those in Fig. 2F, where both n- and p-channel operation is possible. The resulting electrical properties for an n-channel device include saturation and linear regime mobilities of 560 cm2/V·s and 660 cm2/V·s, respectively, on/off ratios of >105, subthreshold slopes of 160 mV/dec [at drain voltage (Vd) = 0.1 V] and width-normalized current outputs of 0.34 mA/mm [at gate voltage (Vg) = 5 V]. These characteristics, as well as those of similar p-channel devices, compare favorably to the performance of counterparts formed on Si-on-insulator (SOI) wafers (14). [For the range of channel lengths investigated, contact resistances do not limit performance (fig. S8).] In all cases, the transience times of different elements in an integrated system can be controlled by use of varied thicknesses and/or stack compositions, or even via combination with nontransient materials. This last possibility is shown in a logic gate (inverter) in the right-hand panels of Fig. 3, C and D, where a nontransient metal (Au) serves as source, drain, and gate electrodes for two transistors joined by transient Mg interconnects.

Many other classes of semiconductor devices and passive components are possible, with examples in Fig. 3 and figs. S9 and S10. The resistors and diodes can serve as temperature sensors; the latter can also be used in photodetectors and solar cells, as shown in Fig. 3 and fig. S10. The Si NM diode and Mg resistive temperature sensors show sensitivities of ~2.23 mV/°C (change in

Fig. 4. In vivo evaluations and example of a transient biodegradable device for thermal therapy. (A) Images of an implanted (left) and sutured (right) demonstration platform for transient electronics located in the subdermal dorsal region of a BALB/c mouse. (B) Implant site after 3 weeks (left). (Right) Histological section of tissue at the implant site, excised after 3 weeks, showing a partially resorbed region of the silk film. (A, subcutaneous tissue; B, silk film; C, muscle layer). (C) Resonant responses of an implanted transient metamaterial structure before and after placement in a silk package, immediately after implantation and at several time intervals thereafter. (D) Measured and calculated Q factor for the metamaterial. The results indicate transience dominated by the diffusion of biofluids through the silk package. (E) Transient wireless device for thermal therapy, consisting of two resistors (red outline) connected to a first wireless coil (70 MHz; outer coil) and a second resistor (blue outline) connected to a second, independently addressable, wireless coil (140 MHz; inner coil). The inset shows a thermal image of this device coupled with a primary coil operating at two frequencies, to drive both the inner and outer coils simultaneously. (F) Primary coil next to a sutured implant site for a transient thermal therapy device. The inset shows an image of a device. (G) Thermal image collected while wirelessly powering the device through the skin; the results show a hot spot (5°C above background) at the expected location, with a magnified view in the inset.
Gold-Catalyzed Direct Arylation

Liam T. Ball, Guy C. Lloyd-Jones,* Christopher A. Russell*

Biaryls (two directly connected aromatic rings, Ar1–Ar2) are common motifs in pharmaceuticals, agrochemicals, and organic materials. Current methods for establishing the Ar1–Ar2 bond are dominated by the cross-coupling of aryl halides (Ar1-X) with aryl metatals (Ar2-M). We report that, in the presence of 1 to 2 mole percent of a gold catalyst and a mild oxidant, a wide range of arenes (Ar1-H) undergo site-selective arylation by arylsilanes (Ar2–SiMe3) to generate biaryls (Ar1–Ar2), with little or no homocoupling (Ar1–Ar2=Ar1–Ar2). Catalysis proceeds at room temperature and tolerates a broad range of functional groups, including those incompatible with cross-coupling. These features expedit biaryl preparation, as demonstrated by synthesis of the nonsteroidal anti-inflammatory diflunisal.

The biaryl moiety (two directly connected aromatic rings, Ar1–Ar2) is a common functionality in pharmaceuticals [such as Lipitor, Crestor, and Diovan, three of the most widely prescribed drugs in 2010 (1)]; in agrochemicals; and in many modern organic materials, including liquid crystal displays, light-emitting diodes, and conducting polymers. The